US 2002/0100017 A1l

branches to step 1112 wherein the replacement is made,
otherwise there is nothing to replace and step 1110 bypasses
any replacement. In any event, the process continues to step
1114.

[0099] At this time, the appropriate assembly version is
known, as specified in the manifest and as altered via any
configuration instructions, as described above. Step 1114
enumerates any dependencies in the assembly manifest that
corresponds to this appropriate assembly for handling in a
similar manner. These and other identified assemblies may
be handled in a similar manner so that the correct versions
as specified in the configurations are bound to the applica-
tion.

[0100] As can be seen from the foregoing detailed descrip-
tion, there is provided a method, system and infrastructure to
version globally named objects in the system. Application
authors may create safe, isolated applications by simply
creating a declarative manifest that describes dependencies
on these shared objects, without needing to be concerned
with coding the application to adjust to the version of the
assembly being used. By the present invention, assemblies
can be safely shared and applications can be more com-
pletely isolated.

[0101] While the invention is susceptible to various modi-
fications and alternative constructions, certain illustrated
embodiments thereof are shown in the drawings and have
been described above in detail. It should be understood,
however, that there is no intention to limit the invention to
the specific form or forms disclosed, but on the contrary, the
intention is to cover all modifications, alternative construc-
tions, and equivalents falling within the spirit and scope of
the invention.

What is claimed is:
1. A computer-implemented method, comprising:

receiving a request corresponding to binding at least one
shared assembly to executable code; and

interpreting configuration information to determine a ver-
sion of a shared assembly to bind to the executable
code, wherein the configuration information is separate
from the shared assembly.

2. The computer-implemented method of claim 1 wherein
interpreting configuration information includes redirecting
one assembly version to another assembly version.

3. The computer-implemented method of claim 1 wherein
the executable code comprises an application program, and
further comprising, associating the application program with
an application configuration having redirection information
therein.

4. The computer-implemented method of claim 3 wherein
associating the application configuration with the applica-
tion program comprises storing the application configuration
in a folder containing the application program.

5. The computer-implemented method of claim 3 wherein
interpreting configuration information includes redirecting
an assembly version from the other assembly version to a
third assembly version according to at least one other
configuration.

6. The computer-implemented method of claim 5 wherein
the at least one other configuration comprises a publisher
configuration.

Jul. 25, 2002

7. The computer-implemented method of claim 5 wherein
the at least one other configuration comprises an adminis-
trator configuration.

8. The computer-implemented method of claim 1 further
comprising, associating at least one assembly version with a
publisher configuration having redirection information
therein, wherein interpreting configuration information
includes interpreting the publisher configuration.

9. The computer-implemented method of claim 8 wherein
associating the publisher configuration with at least one of
the assembly versions comprises storing the publisher con-
figuration in an assembly cache containing at least one of the
assembly versions.

10. The computer-implemented method of claim 1
wherein interpreting configuration information includes
interpreting an administrator configuration.

11. The computer-implemented method of claim 10 fur-
ther comprising, storing the administrator configuration in a
system folder.

12. The computer-implemented method of claim 1 further
comprising, caching data identifying the version of the
shared assembly determined from interpreting the configu-
ration information.

13. The computer-implemented method of claim 1
wherein the executable code comprises an application pro-
gram, and wherein interpreting configuration information
includes interpreting at least one of an application configu-
ration, a publisher configuration and an administrator con-
figuration, each configuration having redirection informa-
tion therein for redirecting one assembly version to another
assembly version.

14. The computer-implemented method of claim 1
wherein the executable code comprises an application pro-
gram, and wherein interpreting configuration information
includes interpreting at least one of a publisher configuration
and an application configuration, each configuration having
redirection information therein for redirecting one assembly
version to another assembly version.

15. The computer-implemented method of claim 1
wherein the executable code comprises an application pro-
gram, and wherein the configuration comprises an applica-
tion configuration, a publisher configuration and an admin-
istrator configuration, and wherein interpreting the
configuration includes, determining whether a safe mode of
operation is present, and if so, interpreting the application
configuration and the administrator configuration but not
interpreting the publisher configuration.

16. A computer-readable medium having computer-ex-
ecutable instructions for performing the method of claim 1.

17. A system in a computing environment, comprising:

an manifest including information that specifies a depen-
dency of executable code on an identified version of a
shared assembly;

a configuration including information that redirects at
least one version of a shared assembly to another
version of that shared assembly; and

a binding mechanism configured to receive a request
directed to execute the executable code, to select the
identified version of the shared assembly from the
manifest, and to interpret the configuration to deter-
mine whether to redirect the identified version in the
manifest to another version identified in the configu-
ration.



